Multilocus sequence and microsatellite identification of intra-specific hybrids and ancestor-like donors among natural Ethiopian isolates of Leishmania donovani.

01 Sep 2014
Gelanew, T; Hailu, A; Schőnian, G; Lewis, MD; Miles, MA; Yeo, M

Protozoan parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis is endemic in Ethiopia where it has also been responsible for fatal epidemics. It is postulated that genetic exchange in Leishmania has implications for heterosis (hybrid vigour), spread of virulent strains, resistance to chemotherapeutics, and exploitation of different hosts and vectors. Here we analyse 11 natural Ethiopian Leishmania donovani isolates consisting of four putative hybrids, seven parent-like isolates and over 90 derived biological clones. We apply a novel combination of high resolution multilocus microsatellite typing (five loci) and multilocus sequence typing (four loci) that together distinguish parent-like and hybrid L. donovani strains. Results indicate that the four isolates (and their associated biological clones) are genetic hybrids, not the results of mixed infections, each possessing heterozygous markers consistent with inheritance of divergent alleles from genetically distinct Ethiopian L. donovani lineages. The allelic profiles of the putative hybrids may have arisen from a single hybridisation event followed by inbreeding or gene conversion, or alternatively from two or more hybridisation events. Mitochondrial sequencing showed uniparental maxicircle inheritance for all of the hybrids, each possessing a single mitochondrial genotype. Fluorescence activated cell sorting analysis of DNA content demonstrated that all hybrids and their associated clones were diploid. Together the data imply that intra-specific genetic exchange is a recurrent feature of natural L. donovani populations, with substantial implications for the phyloepidemiology of Leishmania.