Characterising persistent hot-spots of urogenital schistosomiasis on Unguja Island, Zanzibar

Tom Pennance, Bobbie Person, Mtumweni Ali Muhsin, Alipo Naim Khamis, Juma Muhsin, Iddi Simba Khamis, Khalfan Abdallah Mohammed, Fatma Kabole, David Rollinson and Stefanie Knopp

T.Pennance@nhm.ac.uk
Outline

Identifying...

Surveying...

Characterising...

Tackling...

...persistent hot-spots on Unguja Island
Distribution of *S. haematobium*

Unguja, Zanzibar

Overall *S. haematobium* prevalence <5%

Some areas with much higher prevalence = persistent hot-spots
Selection of persistent hot-spots

ZEST Annual: Single urine filtration examination of ~100 schoolchildren per school (9-12 years)

Prevalence data 2012-2014

>15% *S. haematobium* at some point over 3 years
 = 5 persistent hot-spots

<5% *S. haematobium* at some point over 3 years
 = 2 low-prevalence areas*
Surveying human-water contact sites and safe-water sources

Mapping
- Schools
- Human-water contact sites (i.e. ponds, rivers, streams, rice paddies)
- Safe water sources (i.e. taps, wells etc)

Snail surveys
- Presence of [patent] infected and uninfected *Bulinus globosus*
- Habitat and behavioural surveys

Safe water source availability
- Reliability questionnaire
<table>
<thead>
<tr>
<th></th>
<th>Persistent hot-spot</th>
<th>Low-prevalence area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Coverage</td>
<td>≈ >75%</td>
<td>≈ >75%</td>
</tr>
<tr>
<td>Human-Water Contact Sites (HWCSs)</td>
<td>More HWCSs (12)</td>
<td>Less HWCSs (2)</td>
</tr>
<tr>
<td>Bulinus globosus HWCSs</td>
<td>More HWCSs containing B. globosus (8)</td>
<td>Less HWCSs containing B. globosus (2)</td>
</tr>
<tr>
<td>Infected Bulinus globosus</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Distance from schools to HWCSs</td>
<td>Shorter (229m)</td>
<td>Longer (722m)</td>
</tr>
<tr>
<td>Risk behaviours at HWCSs</td>
<td>More common</td>
<td>Less common</td>
</tr>
<tr>
<td>Number of Safe Water Sources</td>
<td>45</td>
<td>38</td>
</tr>
<tr>
<td>Safe Water Source impact</td>
<td>Generally poor accessibility and availability</td>
<td>Generally poor accessibility and availability</td>
</tr>
<tr>
<td>Number of taps</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>
The number of human-water contact sites, their infestation with *B. globosus* and their distance to schools seem to play a major role for a persistently high *S. haematobium* prevalence in children.
Tackling persistent hot-spots

Treatment +
- Targeted snail control near schools
- Enhanced behaviour change measures
- Increasing access to reliably working taps

= reduce *S. haematobium* prevalence in hot-spot areas and reach **elimination**
Acknowledgements

• Steffi Knopp – Swiss TPH
• David Rollinson, Bonnie Webster, Aidan Emery, Fiona Allan and Muriel Rabone - NHM
• Mtumweni Ali Muhsin, Alipo Naim Khamis, Juma Muhsin, Iddi Simba Khamis, Khalfan Abdallah Mohammed, Fatma Kabole - Zanzibar Neglected Tropical Diseases Programme
• Dan Colley, Carl Campbell, Charlie King, Sue Binder - SCORE
• Lynsey Blair - SCI
• LSHTM – (Ross Paveley now UCB Pharmaceuticals)
• Joanne Webster - RVC
• Russell Stothard – LSTM
• LCNTDR